1.汽车汽油发动机的工作原理是什么?

2.汽车的构造原理及讲解

3.汽车知识大全系列之发动机

4.电喷汽车的工作原理和构造分别是什么呢

5.汽车发动机的构造原理

6.发动机的原理是什么?

汽车发动机结构与原理实践报告_汽车发动机结构与原理

汽车发动机原理介绍如下:

气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。

活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。

活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL表示。

冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。

汽车发动机介绍

汽车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。根据动力来源不同,汽车发动机可分为柴油发动机、汽油发动机、电动汽车电动机以及混合动力等。

常见的汽油机和柴油机都属于往复活塞式内燃机,是将燃料的化学能转化为活塞运动的机械能并对外输出动力。汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。

汽车汽油发动机的工作原理是什么?

每天一点汽车小知识,成为汽车高手

一、汽车构造

汽车不是天生一个整体,而是由各个部件组成的整体造型,其中“底盘”发挥了重要作用,支承起了车身和发动机及其部件。汽车底盘由传动系、行驶系、转向系和制动系四个部分组成,每个系相互作用,才能保证车辆正常行驶。

二、发动机

汽车发动机由两大机构和五大系统组成,它是汽车的“心脏”,动力的来源。通过转换燃料,做功,然后转变为机械能,这是发动机最基本的原理。两大机构:曲柄连杆机构、配气机构;五大系统:冷却系统、润滑系统、燃料系统、启动系统、点火系统。

三、6-12缸多数采用V排列

5缸以下的发动机大部分都是直列模式,少数6缸发动机也有直列模式,过去也有直列8缸发动机。直列发动机的气缸体排成一排,气缸体、气缸盖和曲轴结构简单,成本低,低速扭矩特性好,油耗低,体积紧凑,用途广泛,缺点是功率低。

6~12缸发动机大多采用V型布置,其中V10发动机安装在赛车上。V型发动机长度和高度都很小,布置起来非常方便。而且,大多数人认为V型发动机是比较先进的发动机,已经成为汽车水平的标志之一。V8发动机结构非常复杂,成本很高,所以很少使用。V12发动机太大太重,只有少数豪车使用。大众最近开发了W型发动机,包括W8、W12、W16,即气缸呈四排交错角排列,外形紧凑。

四、新车磨合期至关重要

磨合期的驾驶方法正确与否,对于日后发动机燃油经济性的影响也是很大的。因此一定要牢记时速不超过80公里、转速不超过4000转等雷打不动的新车磨合期的驾驶原则,千万不要破戒。

五、刚加完油感觉动力提升

有些车主会发现每次加完油以后汽车动力会提升,开起来特别流畅,但不知道究竟是什么原因。有人说这是心理作用,其实并不是,这是有科学依据的。

原因就在于加油的时候油箱里原本的汽油蒸汽被挤压流出,一部分汽油蒸汽来到了碳罐被活性炭吸附,加完油以后活性炭吸附了大量油气。等你开车走的时候发动机又从碳罐里把这部分油气吸入气缸燃烧。由于碳罐刚吸饱油气,所以发动机混合气浓度偏高,动力就会提升。

六、你停车的姿态决定了启动后油表的读数

汽车是靠油箱里的油位计测量油量的,而汽车在行驶中加减速时汽油会来回波动,导致油位计的油浮子上下摆动,无法准确统计油量数据。所以如何设置油位检测程序非常重要,很多车都会在通电的瞬间读取油位计信号并作为标准油量,因为此时汽车停放很长时间,汽油液面最稳定。所以如果你把车停在坡道上,那么你的油表读数可能就不准了。具体偏高还是偏低取决于汽油液面和油浮子的位置。

七、冬天露天停放的车冷启动后怠速正常,而地下车库停放的则会怠速偏高

如果你足够留意的话你会发现这样的情况:冬天把车停在户外,冷启动后怠速很稳。但是你把车停在地下车库就不同了,冷启动后怠速会偏高。但是也有一些车刚好相反,冬季露天停放冷启动后怠速偏高,而放在相对温暖的地下车库冷启动后怠速会略低。其实这不是汽车有问题,这是厂家为了应对排放法规而故意这样设定的,只是各个厂家的策略不同而已。

汽车的构造原理及讲解

我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。

气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。

活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点;活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点;上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。

活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。

活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL表示。四冲程发动机的工作循环包括四个活塞行:即进气行程、压缩行程、膨胀行程(做功行程)和排气行程。

汽车知识大全系列之发动机

发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。

(1) 曲柄连杆机构

曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

(2) 配气机构

配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。

(3) 燃料供给系统

汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

(4) 润滑系统

润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。

(5) 冷却系统

冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。

(6) 点火系统

在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。

(7) 起动系统

要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。

电喷汽车的工作原理和构造分别是什么呢

汽车知识大全系列之发动机

一、发动机结构种类解析

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。

汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在气缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着气缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的气缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。

其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。

将V型发动机两侧的气缸,再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。

水平对置发动机的相邻气缸相互对立布置(活塞的底部向外侧),两气缸的夹角为180°,不过它与180°V型发动机还是有本质的区别的。水平对置发动机与直列发动机类似,是不共用曲柄销的(也就是说一个活塞只连一个曲柄销),而且对向活塞的运动方向是相反的,但是180°V型发动机则刚好相反。水平对置发动机的优点是可以很好的抵消振动,使发动机运转更为平稳;重心低,车头可以设计得更低,满足空气动力学的要求;动力输出轴方向与传动轴方向一致,动力传递效率较高。缺点:结构复杂,维修不方便;生产工艺要求苛刻,生产成本高,在知名品牌的轿车中只有保时捷和斯巴鲁还在坚持使用水平对置发动机。

发动机之所以能源源不断的提供动力,得益于气缸内的进气、压缩、做功、排气这四个行程的有条不紊地循环运作。

进气行程,活塞从气缸内上止点移动至下止点时,进气门打开,排气门关闭,新鲜的空气和汽油混合气被吸入气缸内。

压缩行程,进排气门关闭,活塞从下止点移动至上止点,将混合气体压缩至气缸顶部,以提高混合气的温度,为做功行程做准备。

做功行程,火花塞将压缩的气体点燃混合气体在气缸内发生“爆炸”产生巨大压力,将活塞从上止点推至下止点,通过连杆推动曲轴旋转。

排气行程,活塞从下止点移至上止点,此时进气门关闭,排气门打开,将燃烧后的废气通过排气歧管排出气缸外。

发动机能产生动力其实是源于气缸内的“爆炸力”。在密封气缸燃烧室内,火花塞将一定比例汽油和空气的混合气体在合适的时刻里瞬间点燃,就会产生一个巨大的爆炸力,而燃烧室是顶部是固定的,巨大的压力迫使活塞向下运动,通过连杆推动曲轴,在通过一系列机构把动力传到驱动轮上,最终推动汽车。

要想气缸内的“爆炸”威力更大,适时的点火就非常重要了,而气缸内的火花塞就是扮演“引爆”的角色。其实火花塞点火的原理有点类似雷电,火花塞头部有中心电极和侧电极(相于两朵带相反极性离子的云),两个电极之间有个很小的间隙(称为点火间隙),当通电时能产生高达1万多伏的电火花,可以瞬间“引爆”气缸内的混合气体。

要想气缸内不断的发生“爆炸”,必须不断的输入新的燃料和及时排出废气,进、排气门在这过程中就扮演了重要角色。进、排气门是由凸轮控制的,适时的执行“开门”和“关门”这两个动作。为什么看到的进气门都会比排气门大一些呢?因为一般进气是靠真空吸进去的,排气是挤压将废气推出,所以排气相对比进气容易。为了获得更多的新鲜空气参与燃烧,因而进气门需要弄大点以获得更多的进气。

如果发动机有多个气门的话,高转速时进气量大、排气干净,发动机的性能也比较好(类似一个**院,门口多的话进进出出就方便多了)但是多气门设计较复杂尤其是气门的驱动方式、燃烧室构造和火花塞位置,都需要进行精密的布置,这样生产工艺要求高,制造成本自然也高,后期的维修也困难。所以气门数不宜过多,常见的发动机每个气缸有4个气门(2进2出)。

二、发动机可变气门原理解析

前面已经了解过发动机的基本构造和动力来源。其实发动机的实际运转速度并不是一成不变的,而是像人跑步一样,时而急促,时而平缓,那么调节好自己的呼吸节奏尤其重要,下面我们就来了解一下发动机是怎样“呼吸”的。

简单来说,凸轮轴是一根有多个圆盘形凸轮的金属杆。这根金属杆在发动机工作中起到什么作用?它主要负责进、排气门的开启和关闭。凸轮轴在曲轴的带动下不断旋转,凸轮便不断地下压气门(摇臂或顶杆),从而实现控制进气门和排气门开启和关闭的功能。

在发动机外壳上经常会看到SOHC、DOHC这些字母,这些字母到底表示的是什么意思?OHV是指顶置气门底置凸轮轴,就是凸轮轴布置在气缸底部,气门布置气缸顶部。OHC是指顶置凸轮轴,也就是凸轮轴布置在气缸的顶部。

如果气缸顶部只有一根凸轮轴同时负责进、排气门的开、关称为单顶置凸轮轴(SOHC)。气缸顶部如果有两根凸轮轴分别负责进、排气门的开关,则称为双顶置凸轮轴(DOHC)。

底置凸轮轴的凸轮与气门摇臂间需要采用一根金属连杆连接,凸轮顶起连杆从而推动摇臂来实现气门的开合。但过高的转速容易导致顶杆折断,因此这种设计多应用于大排量、低转速、追求大扭矩输出的发动机。而凸轮轴顶置可省略顶杆简化了凸轮轴到气门的传动机构,更适合发动机高速时的动力表现顶置凸轮轴应用比较广泛。

配气机构主要包括正时齿轮系、凸轮轴、气门传动组件(气门、推杆、摇臂等),主要的作用是根据发动机的工作情况,适时的开启和关闭各气缸的进、排气门,以使得新鲜混合气体及时充满气缸,废气得以及时排出气缸外。

所谓气门正时,可以简单理解为气门开启和关闭的时刻。理论上在进气行程中,活塞由上止点移至下止点时,进气门打开、排气门关闭;在排气行程中,活塞由下止点移至上止点时,进气门关闭、排气门打开。

那为什么要正时呢?其实在实际的发动机工作中,为了增大气缸内的进气量,进气门需要提前开启、延迟关闭;同样地,为了使气缸内的废气排的更干净,排气门也需要提前开启、延迟关闭,这样才能保证发动机有效的运作。

发动机在高转速时,每个气缸在一个工作循环内,吸气和排气的时间是非常短的,要想达到高的充气效率,就必须延长气缸的吸气和排气时间,也就是要求增大气门的重叠角;而发动机在低转速时,过大的气门重叠角则容易使得废气倒灌,吸气量反而会下降,从而导致发动机怠速不稳,低速扭矩偏低。

固定的气门正时很难同时满足发动机高转速和低转速两种工况的需求,所以可变气门正时应运而生。可变气门正时可以根据发动机转速和工况的不同而进行调节,使得发动机在高低速下都能获得理想的进、排气效率。

影响发动机动力的实质其实与单位时间内进入到气缸内的氧气量有关,而可变气门正时系统只能改变气门的开启和关闭的时间,却不能改变单位时间内的进气量,变气门升程就能满足这个需求。如果把发动机的气门看作是房子的一扇“门”的话,气门正时可以理解为“门”打开的时间,气门升程则相当于“门”打开的大小。

丰田的可变气门正时系统已广泛应用,主要的原理是在凸轮轴上加装一套液力机构,通过ECU的控制,在一定角度范围内对气门的开启、关闭的时间进行调节,或提前、或延迟、或保持不变。凸轮轴的正时齿轮的外转子与正时链条(皮带)相连,内转子与凸轮轴相连。外转子可以通过液压油间接带动内转子,从而实现一定范围内的角度提前或延迟。

本田的i-VTEC可变气门升程系统的结构和工作原理并不复杂,可以看做在原来的基础上加了第三根摇臂和第三个凸轮轴。它是怎样实现改变气门升程的呢?可以简单的理解为,通过三根摇臂的分离与结合一体,来实现高低角度凸轮轴的切换,从而改变气门的升程。

当发动机处于低负荷时,三根摇臂处于分离状态,低角度凸轮两边的摇臂来控制气门的开闭气门升程量小;当发动机处于高负荷时,三根摇臂结合为一体,由高角度凸轮驱动中间摇臂,气门升程量大。

宝马的Valvetronic可变气门升程系统,主要是通过在其配气机构上增加偏心轴、伺服电机和中间推杆等部件来改变气门升程。当电动机工作时,蜗轮蜗杆机构会驱动偏心轴发生旋转,再通过中间推杆和摇臂推动气门。偏心轮旋转的角度不同,凸轮轴通过中间推杆和摇臂推动气门产生的升程也不同,从而实现对气门升程的控制。

奥迪的AVS可变气门升程系统,主要通过切换凸轮轴上两组高度不同的凸轮,来实现改变气门的升程,其原理与本田的i-VTEC非常相似,只是AVS系统是通过安装在凸轮轴上的螺旋沟槽套筒,来实现凸轮轴的左右移动,进而切换凸轮轴上的高低凸轮。

发动机处于高负荷时,电磁驱动器使凸轮轴向右移动,切换到高角度凸轮,从而增大气门的升程;当发动机处于低负荷时,电磁驱动器使凸轮轴向左移动,切换到低角度凸轮,以减少气门的升程。

轻混合动力车的主要驱动力是燃油发动机,而电动机只是作为辅助作用不能单独驱动汽车。但能在车辆减速、制动时进行能量回收,实现混合动力的最大效率。

汽车发动机的构造原理

电喷发动机工作原理

电喷发动机是采用电子操纵装置.取代传统地机械系统(如化油器)来操纵发动机地供油过程.如汽油机电喷系统就是通过各种传感器将发动机地温度、空燃比.油门状况、发动机地转速、负荷、曲轴位置、车辆行驶状况等信号输入电子操纵装置.电子操纵装置根据这些信号参数.计算并操纵发动机各气缸所需要地喷油量和喷油时刻,将汽油在必定压力下通过喷油器喷入到进气管中雾化.并与进入地空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态.这种由电子系统操纵将燃料由喷油器喷入发动机进气系统中地发动机称为电喷发动机. 电喷发动机按喷油器数量可分为多点喷射和单点喷射.发动机每一个气缸有一个喷油咀,英文缩写为MPI,称多点喷射.发动机几个气缸共用一个喷油咀英文缩写SPI.称单点喷射.

汽油喷射发动机与化油器式发动机相比,突出地优点是能准确操纵混合气地质量,保证气缸内地燃料燃烧完全,使废气排放物和燃油消耗都能够降得下来,同时它还提高了发动机地充气效率,增加了发动机地功率和扭矩.电子操纵燃油喷射装置地缺点就是成本比化油器高一点,因此价格也就贵一些,故障率虽低,一旦坏了就难以修复(电脑件只能整件更换),但是与它地运行经济性和环保性相比,这些缺点就微不足道了.

分类汽油喷射型式分为机械式和电子操纵式两种.机械式汽油喷射装置是一种以机械液力操纵地喷射技术,早在30年代就应用在飞机发动机,50年代开始应用在德国奔驰300BL轿车发动机上.集成电路地出现使电子技术能在发动机上得到应用,一种更好地汽油喷射装置——电子操纵汽油喷射技术也就应运而生了.

结构任何一种电子操纵汽油喷射装置,都是由喷油油路,传感器组和电子操纵单元(微型电脑)三大部分组成.当喷射器安装在本来化油器位置上,称为单点电控燃油喷射装置;当喷射器安装在每个气缸地进气管上,称为多点电控燃油喷射装置.

原理喷油油路由电动油泵,燃油滤清器,油压调节器,喷射器等组成,电控单元发出地指令信号可将喷射器头部地针阀打开,将燃油喷出.传感器好似人地眼耳鼻等器官,专门接受温度,混合气浓度,空气流量和压力,曲轴转速等数值并传送给“中枢神经”地电子操纵单元.电子操纵单元是一个微计算机,内有集成电路以及其它精密地电子元件.它汇集了发动机上各个传感器采集地信号和点火分电器地信号,在千分之几十秒内分析和计算出下一个循环所需供给地油量,并及时向喷射器发出喷油地指令,使燃油和空气形成理想地混合气进入气缸燃烧产生动力.

历史从60年代起,随着汽车数量地曰益增多,汽车废气排放物与燃油消耗量地不断上升困扰着人们,迫使人们去寻找一种能使汽车排气净化,节约燃料地新技术装置去取替已有几十年历史地化油器,汽油喷射技术地发明和应用,使人们这一理想能以实现.早在1967年,德国波许公司成功地研制了D型电子操纵汽油喷射装置,用在大众轿车上.这种装置是以进气管里面地压力做参数,但是它与化油器相比,仍然存在结构复杂,成本高,不稳定地缺点.针对这些缺点,波许公司又开发了一种称为L型电子操纵汽油喷射装置,它以进气管内地空气流量做参数,可以直接遵照进气流量与发动机转速地关系确定进气量,据此喷射出相应地汽油.这种装置由于设计合理,工作可靠,广泛为欧洲和曰本等汽车制造公司所采用,并奠定了今天电子操纵燃油喷射装置地邹型.至1979年起美国地通用,福特,曰本地丰田,三菱,曰产等汽车公司都推出了各自地电子操纵汽油喷射装置,尤其是多气门发动机地推广,使电子操纵喷射技术得到迅速地普及和应用.到目前为止,欧美曰等主要汽车生产大国地轿车燃油供给系统,95%以上安装了燃油喷射装置.从99年1月1曰起,只有采用电子操纵汽油喷射装置地轿车才能准予在北京市场上销售.

现在电喷发动机(电子操纵汽油喷射式发动机)地使用在轿车中越来越普遍,有消息称化油器式发动机轿车在我国各大城市将很快被“消灭”.因此车主对电喷发动机地了解变得越来越重要,只有了解了电喷发动机地“脾气”,您才能更好地使用和养护爱车.

电喷发动机与化油器式发动机有很大地区别,在使用操作方法上也颇有不同.起动电喷发动机时(包含冷车起动),一般无需踩油门.因为电喷发动机都有冷起动加浓、自动冷车快怠速功能,能保证发动机不论在冷车或热车状态下顺利起动;在起动发动机之前和起动过程中,像起动化油器式发动机那样反复快速踩油门踏板地方法来增加喷油量地做法是无效地.因为电喷发动机地油门踏板只操纵节气门地开度,它地喷油量完全是电脑根据进气量参数来决定;在油箱缺油状态下,电喷发动机不应较长时间运转.因为电动汽油泵是靠流过汽油泵地燃油来进行冷却地.在油箱缺油状态下长时间运转发动机,会使电动汽油泵因过热而烧坏,所以如果您地爱车是电喷车,当仪表盘上地燃油警告灯亮时,应尽快加油;在发动机运转时不能拔下任何传感器插头,否则会在电脑中显现人为地故障代码,影响维修人员正确地判断和排除故障.

另外要注意地是,尽量不要在电喷车上装用大功率地移动式无线电话系统及无线电设备,以防止无线电信号对电脑工作产生干扰.

汽车电喷发动机的构造和工作原理 “电喷”发动机(电子控制燃油喷射发动机的简称)系统主要由各种传感器、发动机电子控制单元(ECU)和各种执行器三大部分组成。

传感器是“电喷”发动机系统的主要组成部分之一。它是ECU的“眼睛”和“耳朵”,时刻监视着系统内外的变化,使发动机始终处在一个良好的运转状态。用于“电喷”发动机中的传感器主要有:进气流量传感器、进气压力传感器、进气温度传感器、冷却液温度传感器、节气门位置传感器、曲轴位置传感器、同步信号传感器、氧传感器、爆震传感器、车速传感器。下面对它们的构造和工作原理逐一进行介绍。

一、进气流量传感器

这类传感器是决定喷油量的重要传感器。它安装在空气滤清器后的进气管前端,用来检测进气量的参数。单独检测进气流量或进气压力均能反映进气量的情况,所以有的“电喷”发动机采用进气流量式检测(如凌志LS400、宝马等),有的则采用进气压力式检测(如皇冠3.0、北京切诺基等)。

进气流量传感器的种类较多,有机械检测的翼片式进气流量计,有光电检测的卡门漩涡式流量计,有热敏元件检测的热线式流量计及它的改进型热膜式流量计。

常采用的热线式进气流量式传感器的工作原理图。为了测量进气温度(即进气流量)的变化,在进气管道中安装了两个由自金丝(或白金薄膜)做成的热敏电阻Rt和Rt’(Rt’为温度补偿电阻),与外部的R1、R2构成惠斯顿电桥。

发动机不工作时,即进气管道中的空气处于静止状态时,电桥维持在一种平衡状态,控制集成电路(IC)不起调整控制作用。发动机工作时,由于空气从热敏元件Rt、Rt’周围流过,Rt、Rt’周围的空气温度及Rt、Rt’自身的阻值均要降低(PTC特性)。所以电桥改变原平衡状态,在R1两端产生与原来不同的电压,使集成电路(IC)进行控制调整。调整的结果是使Rt两端电压升高,因此流过Rt、Rt’的电流增大,产生更多的热量。最终因温度升高,使Rt、Rt’的阻值升高,直至电桥重新达到平衡状态。

调节控制规律是:进气(空气)流量越大,电桥越不平衡,因而控制调节电压也就越高,流过Rt的热线电流也就越大。由于发动机工作时进气流量是在不断变化的,所以流过电桥上的热线电流也是不断变化的,即Rt两端的电压UO也是在不断变化的。把这个与进气量成正比变化的电压信号UO送至ECU,ECU再去控制喷油量的大小,即可使发动机转速稳定在不同的量级上。

二、进气压力传感器

这类传感器是控制喷油量大小的另一类传感器。它安装在发动机的进气歧管上,用来检测进气歧管内的绝对压力和环境大气压之间的差值。它的种类也较多,有膜片传动的可变电阻式、膜片传动可变电感式、超声波压电换能式、压敏电阻式和电容式。

图3是北京切诺基轿车采用的膜片传动可变电阻式进气压力传感器工作原理图。它的构造及工作原理类似于传统的膜片式机油压力传感器。只不过它没有触点,采用的是可变电阻形式。

来自节气门后部歧管内真空度高低的变化反映了进气压力高低的变化。在真空吸力的作用下,进气压力传感器密封腔内的膜片左右移动,膜片又带动可变电阻的滑片移动,最后使传感器输出的信号电压发生变化。ECU则根据这个随进气压力高低变化的信号电压去控制喷油量的大小。

三、进气温度传感器

这类传感器安装在进气歧管内,用来向ECU提供进气温度信息。进气温度也与喷油量的大小有关。进气温度低(如启动冷车)就要加大喷油量,进气温度高(如热车)就要减小喷油量。实际上测量进气温度的高低,也就是间接地测量进气量(空气密度)的大小。因为进气量的大小与空气的密度有关,而空气的密度又与进气温度成正比。汽车上广泛采用的是半导体热敏电阻式温度传感器,具有负的温度系数(NTC)。它的构造和工作原理很简单。

当进气温度低时,热敏电阻Rt的阻值增大,电路中的电流将减小。当进气温度高时,热敏电阻Rt的阻值将减小,电路中的电流将增大。由于回路中电流的变化,将引起Rt两端电压的变化,ECU接收到这个变化的信号电压后,也就获悉了进气温度的高低,然后去控制喷油量的大小。

四、冷却液温度传感器

这类传感器安装在冷却液管道内,用来向ECU提供发动机温度的信息。它采用的也是上述的半导体热敏电阻式温度传感器,其构造与工作原理基本相同,在此不再赘述。

五、节气门位置传感器

这类传感器与喷油量的大小有直接关系。它安装在节气门阀体上,用来向ECU提供节气门的开启状态及速度的信息。它开启的角度大小,反映着发动机的转速和负荷的情况。

节气门位置传感器有可变电阻式模拟线性输出和触点式开关型输出两种。可变电阻式线性输出的节气门位置传感器的工作原理图。

传感器可变电阻的滑片(即中间抽头)由节气门轴带动在电阻片上滑动。当节气门开启角度小时(如怠速或发动机小负荷运转时),滑片向上滑动,电阻值增大,这时从B端向ECU输入一个低的信号电压。当节气门开启角度增大时(如汽车爬坡或大负荷运转),滑片向下滑动,电阻值减小,这时从B端向ECU输入一个高的信号电压。输出信号电压的大小与节气门开度的大小成正比。ECU根据输入电压的高低,以判断发动机当前的情况,决定喷油量的大小、点火是否提前、是否需要中断辅助电器设备(如爬坡、大负荷时断开空调)等。

六、曲轴位置传感器

这类传感器是检测发动机的曲轴转角、活塞位置和发动机转速的重要传感器。它向ECU提供上述被检测对象当前所处的状态信息,它直接关系到点火正时与发动机能否启动。

曲轴位置传感器的结构形式和安装位置因不同的车型而各异。结构形式常见的有:霍尔式、磁脉冲式和光电式。安装的部位有在飞轮及飞轮壳上的,有在分电器内的,还有在曲轴前端或凸轮轴前端的。

是一种安装在飞轮上的霍尔效应式曲轴位置传感器。四缸发动机飞轮上的信号传感器结构。飞轮上有8个槽齿,每4个槽齿为1组,共分成2组。1、4两缸为一组,2、3两缸为一组,各占飞轮圆周60°。每组中每个槽间隔20°,每组相隔180°。

当飞轮上的槽经过传感器时,霍尔传感器便产生信号电压,输出高电平(5v)。当飞轮两槽间的齿经过传感器时,霍尔传感器输出低电平(0.3V)。因此当飞轮上每一个齿槽通过传感器时,都将产生一个高、低电平变化的脉冲信号。四缸发动机的飞轮每旋转一周,将产生两组脉冲信号(每组4个),把这两组脉冲信号送人ECU,ECU就可利用一组脉冲信号判断1、4两缸活塞已接近上止点,或利用男一组脉冲信号,判断2、3两缸活塞已接近上止点,然后确定何时喷油。

另外,ECU根据输入的脉冲速率,还能计算出单位时间内飞轮转过的槽齿数,也就是发动机当前的转速。

七、同步信号传感器

ECU通过曲轴位置传感器,只能判定某两个活塞(如1、4两缸)已接近上止点。但它不知道究竟是“1”缸活塞还是“4”缸活塞已接近上止点。对于“电喷”发动机按次序喷射系统来说,必须要知道是哪一个缸的活塞已接近上止点,以备喷油或点火。这就需要同步信号传感器来完成这个判缸任务。

同步信号传感器与曲轴位置传感器的结构和工作原理基本相同,它也有多种安装及结构形式。它主要由分电器轴驱动的脉冲转子和霍尔传惑器组成。图中C、D间虚线以上部分的半圆弧(180°)称作脉冲环,其与霍尔传感器配合工作产生脉冲信号。当分电器轴驱动脉冲转子转动,脉冲环从D端开始进入霍尔传感器内直至C端时,霍尔传感器输出高电平。ECU接收到高电平后,便可判定“4”缸活塞已接近上止点且为排气行程,可进行喷油。而“1”缸活塞也已接近上止点,且为压缩行程可进行点火。

当分电器轴驱动脉冲转子转动,脉冲环从c端开始离开霍尔传感器后,信号传感器输出低电平。ECU接收到低电平信号后,便可判定“4”缸活塞已接近上止点,但为压缩行程可进行点火。

而“1”缸活塞为排气行程,可进行喷油。发动机转两周,脉冲转子转一周,同步信号传感器产生的脉冲信号电压波形。

八、氧传感器

现代汽车为了减少废气排放(主要成分是一氧化碳CO、碳氢化合物HC及氮氧化物NOx),以适应排污法规的要求,普遍在排气管装有氧传感器和三元催化反应器。利用氧传感器提供反馈信息送至ECU,实现混合气空燃比的闭环控制。同时还利用三元催化反应器将废气中的CO转化(氧化)为O2,HC化合物转化(氧化)为H2O,NOx转化(还原)为O2、N2无害气体。为了达到此目的,也就是说为了使三元催化反应器能正常工作,要求混合气的空燃比必须在理论空燃比范围内(理论混合气空燃比为14.7:1)。这就需要用氧传感器测定废气中氧的含量(即空燃比大小),向ECU反馈信息,及时修正喷油量使空燃比回到理论值。

氧传感器有氧化锆式和氧化钛式(电阻型)两种。它的外表面电极插入废气管中,与废气接触,内表面电极与大气相通。氧化锆是固体电解质,它在一定的温度时能与氧气发生电离作用。当废气中的氧与大气中的氧含量有差异时,如大气中的氧浓度比废气中的氧浓度高对(混合气浓),氧离子就从大气侧的内表面电极向排气侧的外表面电极移动,于是在两个电极之间便产生一个电动势,亦即信号电压。当产生的信号电压低时(0.1v),表明废气中含氧量高,混合气稀。产生的信号电压高时(1v),表明废气中含氧量低,混合气浓。ECU根据氧传感器送来的信号电压及时修正喷油量,实行闭环控制使空燃比回到理论值,以减少排污,提高经济性。

在实际使用中,因氧化锆传感器的输出信号与温度有关(600℃左右时最佳),所以常采用图8b带辅助加热元件的工作方式。

九、爆震传感器

发动机工作时因点火时间提前过度(点火提前角)、发动机的负荷、温度及燃料的质量等影响,会引起发动机“爆震”。发生爆震时,由于气体燃烧在活塞运动到上止点之前,轻者产生噪声及降低发动机的功率,重者会损坏发动机的机械部件。为了防止爆震的发生,爆震传感器是不可缺少的重要器件,以便通过电子控制系统去调整点火提前时间。

发动机发生爆震时,爆震传感器把发动机的机械振动转变为信号电压送至ECU。ECU根据其内部事先存储的点火及其它数据,及时计算修正点火提前角,去调整点火时间,防止爆震的发生。

爆震传感器也有多种类型。常见的有压电式(共振型、非共振型)和磁致伸缩式两大类。其中压电式共振型传感器应用最多,它一般安装在发动机机体上部,利用压电效应把爆震时产生的机械振动转变为信号电压。当发生爆震时的振动频率(约6000Hz左右)与压电效应传感器自身的固有频率一致时,即产生共振现象。这时传感器会输出一个很高的爆震信号电压送至ECU,ECU及时修正点火时间,避免爆震的发生。图9(a)是压电式共振型爆震传感器输出信号电压与频率的关系。转载请注明转自“维修吧- ”

十、车速传感器

这类传感器的作用是向ECU提供汽车在怠速、减速、加速和恒速时的速度信息的。它有舌簧开关式、光电式、霍尔式等。一般安装在仪表盘内,由机械部件来驱动。

它由里程表芯子驱动的磁铁和舌簧开关组成。汽车行驶的车轮转速通过里程表芯子来驱动磁铁每旋转一周,其极性要改变一次,使舌簧开关的触点闭合和断开一次,从而产生一连串的脉冲信号电压。ECU接收到此信号后,通过计算脉冲数的多少,就可知道当前的车速状况。

“电喷”发动机除了以上传感器外,还有类似传感器的一些信号。如:空调请求信号、启动信号、蓄电池电压信号等,在这就不一一叙述了。

综上所述,传感器是“电喷”发动机的重要部件。它们的工作正常与否,直接关系到发动机工作的正常与否。在“电喷”发动机中,传感器出现的故障占有很大的比例,而ECU和执行器出现的故障相比来说要少得多。

发动机的原理是什么?

发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。

 发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异。

 汽油发动机柴油发动机汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。柴油机通常由两大机构和四大系统组成。

汽车发动机的基本工作原理是什么?

发动机的基本工作原理是将热能转化为动能:

1、首先在外力的作用下(起动机的带动)通过曲轴带动活塞作往复运动,一旦气缸作功,便可以脱离外力自行工作

2、活塞由上止点向下止点运动时,进气门打开,开始实现进气(汽油车进的是混合气,柴油机进的是纯空气)------进气

3、活塞由下止点向上止点运动时,进排气门关闭,将刚才的进气进行压缩,并产生高温------压缩

4、在压缩终了时,汽油车的混和气在火花塞的作用下进行点火燃烧、柴油车的高温气体在喷油器的作用下进行喷油而自行燃烧,气缸内的气体在燃烧的作用下急剧膨胀,促使活塞下行------作功

5、活塞再由下止点向上止点运动时,排气门打开进行排气,并准备下一个循环。

发动机的原理是什么?

发动机有很多种。

柴油发动机是一种,燃气轮机是另外一种。每种发动机都有自己的优缺点。

汽车发动机是一种“内燃发动机”——燃烧偿生在内部。

介绍一下内燃发动机的原理:

目前几乎所有汽车都使用四冲程燃烧循环来将汽油转化为运动。 四冲程方式又称作“奥托循环”,以此纪念1867年发明它的尼克劳斯?奥托 (Nikolaus Otto)。这四个冲程如图1所示。 它们分别是:

进气冲程

压缩冲程

燃烧冲程

排气冲程

循环过程

在图中,可以看到称作“活塞”的装置,活塞通过连杆连接到曲轴。 当曲轴旋转时,它的作用相当于复位。 在发动机的循环过程中会发生如下事情:

典型汽车发动机的内部构造

1. 活塞开始时位于顶部,排气门打开,然后活塞向下运动,在发动机的气缸中充满空气和汽油的混合物。 这便是吸气冲程。 此时,只需要在空气中混合最少量的汽油即可。 (图中部分1)

2. 然后,活塞向上返回以压缩燃油/空气混合物。 压缩过程使得爆炸更具威力。 (图中部分2)

3. 当活塞到达其冲程的顶部时,火花塞发出一个火花,点燃汽油。 气缸中的汽油爆炸,推动活塞向下运动。 (图中部分3)

4. 在活塞到达其冲程的底部后,排气门开启,废气被排出气缸并进入排气尾管。 (图中部分4)

现在,发动机准备进行下一次循环,再次吸入空气和汽油。

注意,内燃发动机输出的运动是旋转运动,而土豆加农炮产生的运动是线性运动(直线)。 在发动机中,活塞的线性运动转化为曲轴的旋转运动。 而旋转运动非常好,因为我们正好打算通过它让车轮转起来。

发动机的工作原理 发动机的工作原理是什么

发动机的工作原理:

发动机分为活塞发动机,冲压发动机,火箭发动机,涡轮发动机。

工作过程:进气-压缩-喷油-燃烧-膨胀做功-排气。

(1) 进气冲程 进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。

(2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。

(3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。

(4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。

飞机发动机工作原理是什么?

补充一下。楼上只是说的喷气式飞机。

对于螺旋桨飞机,其实只要发动机功率足够大,重量足够轻,就可以给飞机用。

历史上就是因为发明了较轻的内燃机代替了蒸汽机,飞机才有可能成功。

以前螺旋桨飞机主要用汽油活塞发动机。跟汽车的基本原理差不多。

现在除了活塞动机外,螺旋桨飞机还有另外一个选择,可以用涡轮螺旋桨发动机。相当于吧涡轮风扇发动机的风扇外面的整流罩去掉,把风扇做得很大。

汽车发动机熄火的原理是什么?

应该是发动机熄火的原因是什么?

上面几位回答都有道理,只是没有叙述全面。发耿机熄火的主要原因就是汽车运行负载转矩(扭矩)大于了发动机输出的转矩,不管是在行驶中还是起步时。正如上面的某位先生所说,发动机工作包括四个冲程:吸气、压缩、爆发(做功)和排气,其中只有一个是输出转矩的(做功),其余三个冲程是依靠飞轮矩的惯性来运动的。当输出转矩小于负载转矩时,发动机被制动,无法进行四个冲程的循环工作,制动时间过长,没有了输出转矩,运动惯性消失,发动机自然就熄火了。

汽车发动机的工作原理是什么?

四冲程汽油机工作原理

汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。

四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。

(1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。

(2) 压缩冲程(pression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。

发动机制动工作原理是什么?

发动机制动是指擡起油门踏板,但不脱离开发动机,利用发动机的压缩行程产生的压缩阻力,内摩擦力和进排气阻力对驱动轮形成制动作用。

在实际操作中,利用发动机制动  1、 在渣油路面、泥泞冰雪路面等滑溜路面时,应尽可能地利用发动机制动,灵活地运用驻车制动,尽量减少脚制动。如果使用脚制动,最好用间歇制动,且不可一脚踩死,以防侧滑。

2、 在下长坡、崎岖山路等陡峭路面时,必须利用发动机制动,结合间歇制动来控制车速。由于长时间使用制动器会影响制动效能,甚至失去制动作用。因此,遇到这种情况,应适当停车休息,待制动毂和制动蹄片冷却后再继续行驶。

3、 利用发动机制动时,需根据路况和车辆负荷等情况选择合适的挡位,并根据车速大小给以适当的车轮制动。挡位太低,车速太慢;挡位太高,车轮制动器作用太频繁。

4、 如果发动机上没有特殊装置,在利用发动机制动时,不应熄火。否则,被吸入汽缸的可燃混合气中的汽油可能凝结在汽缸壁上稀释机油,影响其润滑效能,加速发动机磨损;此外,一部分汽油还可能凝结在排气管和消声器中,在重新点火时会引起“放炮”现象。

发动机制动就是拖档走,挂著档不给油,发动机对车没有牵引力。相反由于车轮转动带动了发动机,发动机对车有一个反作用的阻力,档位越高发动机对车的作用越小,反之越大。

先说说车速的降低我们就要相应的降挡才能有效的发动机制动,这里新手特别要注意,就是换挡的时候容易发生事故。再说发动机制动刹车灯不会点亮对后车没有提示更易发生事故。

在说说发动机制动是不是保护发动机省油呢,发动机制动就海车轮克服发动机阻力的制动,发动机只要运转都会磨损费油就不存在什么保护发动机和省油了。不过发动机制动倒是可以增加刹车片的寿命。

当然不能说发动机制动就没有用了,在长距离的下坡路段为了减速采用这种制动是最好的方式。不过这些都要建立在你能熟练的应用发动机制动的基础之上。

发动机点火顺序的原理是什么

汽车发动机都是多缸发动机,常见的轿车发动机是4缸和6缸。多缸发动机由若干个相同的气缸排列在一个机体上共用一根曲轴。4冲程发动机一个工作循环曲轴转两圈,即720度。为了保持工作平衡,各缸点火间隔角要求都相等,4缸各缸点火间隔角为180度,6缸为120度。

多缸发动机各缸作功都有一个顺序,称为发动机的点火顺序。点火顺序取决于发动机的结构、曲轴的设计和曲轴负荷等因素。这里有两处提及曲轴,实际上发动机的平稳性很大程度决定于曲轴,曲轴旋转质量的不均匀而产的离心的惯性力,会使发动机振动。所以,曲轴曲拐(轴颈及它两端的曲柄)要尽可能对称均匀,连续作功的两缸相隔尽量远些,V型发动机左右两排气缸尽量交替作功等。因此,发动机就必须要有一个能够平衡曲轴运转的点火顺序。

直列式4缸发动机的点火顺序是:1-4-2-3或1-3-4-2;

直列式5缸发劫机的点火顺序是:1-2-4-5-3

直列式6缸发动机的点火顺序是:1-5-3-6-2-4或1-4-2-6-3-5;

V型6缸发动机,首先要弄清楚气缸顺序,因为V型发动机气缸序号的排列方法是不统一的。一般而言,人坐在驾驶室内,如果气缸顺序是右边自前往后为:1、3、5,左边自前往后为2、4、6。点火顺序一般是:1-4-5-2-3-6。如果右边自前往后为:2、4、6,左边自前往后为1、3、5。点顺次序一般是:1-6-5-4-3-2。

轿车发动机气缸排列常见有直列式和V型排列。直列式发动机各缸排列成一排,各气缸呈直立状,排列在一个机体上共用一根曲轴和一个缸盖。直列式发动机结构相对简单,易于制造和维修。但由于气缸直立使汽车前部比较高,影响轿车的空气动力学设计,因而直列式发动机多用于4缸等小型发动机,防止尺寸过大。

V型发动机的气缸分两排排列,两排气缸夹角60度-90度,呈现V型而得名。两排气缸排列在一个机体上共用一根曲轴,各用一个缸盖(即有两个缸盖)。V型发动机的优点是高度比直列式小,汽车前部可以做得低一些,改善轿车的空气动力学性质,同时缩短了发动机的长度,缩短了曲轴长度,不但减少了发动机的占用空间,使得发动机紧凑化,还可以减少发动机的扭转振动,令发动机运转更加平稳。当然构造相对复杂,零件增加,成本增大。现在V型发动机主要用于6缸及6缸以上发动机